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Abstract
Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative

default mode network (DMN). Interplay between this canonical network and others probably con-

tributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying

schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypo-

connectivity within the DMN, and both increased and decreased DMN coupling with the

multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically

revisited network disruption in patients with schizophrenia using data-derived network atlases and

multivariate pattern-learning algorithms in a multisite dataset (n5325). Resting-state fluctuations

in unconstrained brain states were used to estimate functional connectivity, and local volume dif-

ferences between individuals were used to estimate structural co-occurrence within and between

the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of

network coupling were used to characterize healthy participants and patients with schizophrenia,

and to identify statistically significant group differences. Evidence did not confirm that the back-

bone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional

and structural aberrations were frequently located outside of the DMN core, such as in the ante-

rior temporoparietal junction and precuneus. Additionally, functional covariation analyses

highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted

aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to
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canonical networks in schizophrenia. We thus underline the importance of large-scale neural inter-

actions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.
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1 | INTRODUCTION

Schizophrenia is one of the most devastating medical conditions,

affecting �1% of the general population across cultures (Salomon

et al., 2013). The clinical manifestations of schizophrenia reflect the dis-

ruption of a variety of higher-order cognitive processes (D’Argembeau,

Raffard, & Van der Linden, 2008; DeLisi, 2001; Frith & Corcoran, 1996;

Haggard, Martin, Taylor-Clarke, Jeannerod, & Franck, 2003), which are

likely to be subserved by the association cortex (Buckner & Krienen,

2013; Spreng, Mar, & Kim, 2009; Stephan et al., 2016). A collection of

associative cortical areas commonly linked with higher-level cognitive

processes in both health and schizophrenia is the default mode net-

work (DMN).

Several investigators have shown that dysfunction of the DMN

in schizophrenia is linked to many of the positive and negative symp-

toms, such as delusional experiences, hallucinations, and disorgani-

zation of thought and behavior (Bluhm et al., 2007; Camchong, Lim,

Sponheim, & MacDonald, 2009; Garrity et al., 2007; Rotarska-

Jagiela et al., 2010; Whitfield-Gabrieli et al., 2009). DMN dysregula-

tion in schizophrenia has been associated with deficits in higher-

order cognitive processes from different symptom clusters, ranging

from attention to social cognition (Holt et al., 2011; Northoff & Qin,

2011; Whitfield-Gabrieli & Ford, 2012). While �23% of variation in

liability for schizophrenia can be explained by genetic risk variants

(Lee et al., 2012; Ripke et al., 2014), evidence suggests that up to

40% of the interindividual variance in functional connectivity pat-

terns of the DMN is under genetic control (Glahn et al., 2010), sug-

gesting patterns of DMN organization to be a clinically useful

biomarker of schizophrenia.

Evolutionarily, regions of the association cortex, including the

DMN, have increased their spatial distance from sensory-motor areas,

allowing cognition to become more decoupled from perception-action

cycles, a view known as the “tethering hypothesis” (Buckner & Krienen,

2013). Indeed, the DMN was recently shown to be located at a maxi-

mum distance from sensori-motor regions in both functional and topo-

graphical space (Margulies et al., 2016). These findings help explain

why the DMN is particularly important for maintaining and manipulat-

ing abstract representations from downstream multimodal brain sys-

tems (Andrews-Hanna, Smallwood, & Spreng, 2014; Buckner,

Andrews-Hanna, & Schacter, 2008; Konishi, McLaren, Engen, & Small-

wood, 2015; Raichle, 2015). Based on this integrative account of DMN

function, its importance as a diagnostic measure for many of the fea-

tures of schizophrenia may emerge through its abnormal interactions

with other neural systems.

Understanding how large-scale networks subserve and control

higher-order cognition is an emerging agenda in psychiatric research

(Jang et al., 2017; Medaglia, Lynall, & Bassett, 2015). In particular, reor-

ganization of the coupling modes between the DMN, saliency network

(SN), and dorsal attention network (DAN) has been repeatedly pro-

posed to carry information about the cognitive states that is comple-

mentary to task-related neural activity increases and decreases in the

same network (Bzdok et al., 2016b; Margulies et al., 2016). Therefore,

this study systematically explored the dysfunctional couplings between

the DMN, SN, and DAN in schizophrenia (White, Joseph, Francis, &

Liddle, 2010; Woodward, Rogers, & Heckers, 2011).

Abnormal connectivity between large-scale networks and the

DMN can provide insight into the longstanding “dysconnection hypoth-

esis” that explains schizophrenia pathophysiology as coupling impair-

ments due to context-dependent synaptic modulation (Friston, Brown,

Siemerkus, & Stephan, 2016; Friston & Frith, 1995; Stephan et al.,

2009a; Weinberger, Berman, Suddath, & Torrey, 1992). According to

this pathophysiological concept, interregional coupling might be aber-

rant in schizophrenia because of impaired connectional pathways. For

instance, it has been proposed that the strength of dopaminergic projec-

tions to canonical brain networks is altered in schizophrenia (Lewis &

Gonzalez-Burgos, 2006; Stephan et al., 2009). Such dysconnection of

large-scale networks may contribute to positive symptoms through the

failure of attentional reallocation and monitoring processes, but also to

cognitive symptoms through impaired perceptual inference and disturb-

ance of associative learning, as well as to negative symptoms due to

inability of learning from and adapting to social environments. Together,

these converging lines of evidence highlight that coupling patterns of

canonical networks and the DMN may serve as an important biomarker

for many aspects of the psychopathology of schizophrenia.

Although prior studies have highlighted the DMN as important in

schizophrenia, the results have revealed a multifaceted and often

inconsistent picture of how this large-scale network links to the major

psychiatric disorder. Several studies have reported hypoconnectivity

between regions of the DMN, such as between the posteromedial cor-

tex (PMC) and the temporoparietal junctions (TPJ; Bluhm et al., 2007;

Camchong, Lim, Sponheim, & MacDonald, 2011; Pankow et al., 2015).

Other investigators instead reported hyperconnectivity within the

DMN, such as between the medial prefrontal cortex and the PMC

(Whitfield-Gabrieli et al., 2009; Zhou et al., 2007). Frequently inconsis-

tent findings have also been published on pathological connectivity

between the DMN and other commonly observed multimodal net-

works. For example, coupling of the DMN with the DAN as well as

coupling between the DMN and the SN were reported as
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pathologically decreased by some (White et al., 2010; Woodward et al.,

2011) and as pathologically increased by others (Manoliu et al., 2013).

Contradictory neural coupling findings have therefore been reported

within the DMN of schizophrenia patients, as well as between the

DMN and the other major brain networks including SN and DAN.

Given their intimate neurophysiological relationships and impor-

tance for disease, we studied the DMN and its pattern of coupling with

the multimodal DAN and SN in schizophrenia adopting a comprehen-

sive analysis strategy. First, because richer brain signals will be meas-

ured by taking into account the functional heterogeneity within the

DMN at the subregional level, we deployed fine-grained topographical

definitions from a recently completed DMN atlas as the (regions of

interest (ROIs); Bzdok et al., 2013, 2015, 2016a; Eickhoff, Laird, Fox,

Bzdok, & Hensel, 2016). Second, we extended the previous functional

connectivity analyses between network parts to sparse inverse covari-

ance estimation (Friedman, Hastie, & Tibshirani, 2008), which has

recently been adapted for use in neuroimaging (Varoquaux, Gramfort,

Poline, & Thirion, 2010). This under-exploited statistical framework,

combined with benefits of using a large data-set, (i) offered increased

interpretability by removing unimportant coupling relations, (ii)

acknowledged the entire set of coupling relations instead of consider-

ing only pairs in isolation, and (iii) could account for the impact of third-

party influences on each coupling relation. Third, the modeling

approach is sufficiently abstract to allow for analogous analyses of the

relationship between networks in both the functional (resting-state

connectivity) and the structural (interindividual differences in brain vol-

ume) domain. Quantifying these aspects of structure-function corre-

spondence underlying DMN aberration in schizophrenia aimed to

complement previous connectivity investigations. We hypothesized

that structural and functional interactions of DMN subnodes with two

major brain networks provide insights into the mechanisms underlying

schizophrenia psychopathology. That is, we expected the comparable

quantification of neural network coupling in brain volume and function

to allow zooming in on the multi-level disturbances underlying schizo-

phrenia. This comprehensive analysis agenda allowed the formalization

of complex correspondence between the neurobiological endopheno-

type and the clinical exophenotype in schizophrenia spectrum

disorders.

2 | MATERIALS AND METHODS

2.1 | Data resources

This study considered magnetic resonance imaging (MRI) data from

five different population samples acquired in Europe and USA: Aachen,

Goettingen, Groeningen, Lille, and COBRE. Resting-state functional

connectivity (RSFC) and voxel-based morphometric (VBM) data were

collected from a total of 482 participants, 241 patients with schizo-

phrenia and 241 healthy controls. Given the present goal to directly

compare functional brain recordings and structural brain scans, we fur-

ther considered only those participants who provided both RSFC and

VBM in the database. These control and disease groups (n5325) were

matched for age within and across sites (see Supporting Information

Table S1 for details). No participant in the healthy group had a record

of neurological or psychiatric disorders. Each participant in the schizo-

phrenia group had been diagnosed by a board-certified psychiatrist in

accordance with the clinical criteria of the International Classification

of Diseases (ICD-10) or the Diagnostic and Statistical Manual of Mental

Disorders (DSM-IV-TR). All acquisition sites used 3T MRI scanners (see

Supporting Information Table S2 for details). For the acquisition of

functional brain maps (i.e., RSFC), fMRI scans of blood-oxygen-level-

dependent (BOLD) signal were recorded from the participants who

were instructed to lie still during the scanning session and to let the

mind wander. A post-scan interview confirmed that participants

adhered to these instructions and did not fall asleep. For the acquisition

of structural brain maps (i.e., VBM), 3D T1 MRI scans were recorded

from each participant. All participants gave written informed consent

to participate in the study, which was approved by the ethics commit-

tee of the RWTH Aachen University, Germany. Note that all pheno-

typic information has been anonymized for tabulation.

2.2 | Brain function: Resting-state fMRI

To measure functional activity of brain regions, we analyzed resting-

state EPI (echo-planar imaging) scans from standard BOLD acquisitions

(see Supporting Information Table S2 for details). The preprocessing

was performed in SPM8 (Statistical Parametric Mapping, Wellcome

Department of Imaging Neuroscience, London, UK, http://www.fil.ion.

ucl.ac.uk/spm/) run under MATLAB R2014a (Mathworks, Natick, MA).

The first four brain scans were discarded to allow for magnetic field

saturation. The EPI images were corrected for head movement by

affine registration using a 2-pass procedure. To further reduce spurious

correlations induced by motion, variance that could be explained by

the head motion was removed from each voxel’s time series. In particu-

lar, in adherence to previously published evaluations (Chai, Castanon,

Ongur, & Whitfield-Gabrieli, 2012; Satterthwaite et al., 2013), we

removed nuisance signals according to: (a) the 6 motion parameters

derived from the image realignment, (b) their first derivatives, and (c)

the respective squared terms (i.e., 24 parameter regression). These cor-

rections have been shown to increase specificity and sensitivity of

functional connectivity analyses and to detect valid signal correlation at

rest. Motion correction was applied in all analyses. We did not perform

global signal regression. Finally, the signal time series were band-pass

filtered to preserve frequencies between 0.01 and 0.08 Hz, which have

previously been associated with fluctuations of neuronal activity (Fox

& Raichle, 2007; Lu et al., 2007), and are least impacted by physiologi-

cal artifacts such as heart rate and respirations.

2.3 | Brain structure: Voxel-based morphometry

(VBM) MRI

To measure the local brain volume across individuals, a high-resolution

anatomical image was acquired from each participant using conven-

tional scanning sequences. Anatomical scans were preprocessed with

the VBM8 toolbox (https://dbm.neuro.uni-jena.de/vbm) in SPM8 using

standard settings (DARTEL normalization to the ICBM-152 template,
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affine and non-linear spatial normalization). Within a unified segmenta-

tion model (Ashburner & Friston, 2005), the brain scans were corrected

for bias-field inhomogeneities. The brain tissue was segmented into

gray matter, white matter, and cerebrospinal fluid, while adjusting for

partial volume effects. We performed nonlinear modulation of seg-

mented images to account for the amount of expansion and contrac-

tion applied during normalization using the nonlinear only modulation

function within the VBM8 toolbox. The ensuing adjusted volume meas-

urements represented the amount of gray matter corrected for individ-

ual brain sizes.

2.4 | Regions of interest

The DMN is essentially composed of four areas (which we henceforth

refer to as network nodes), including the dorsomedial prefrontal cortex

(DMPFC), the PMC, as well as the left and right TPJs (Buckner et al.,

2008; Raichle et al., 2001). We note that the common approach is to

examine the DMN with these nodes as targets of investigation (Du

et al., 2016; Greicius, Krasnow, Reiss, & Menon, 2003; Whitfield-

Gabrieli & Ford, 2012), assuming that the nodes of the DMN are func-

tionally homogeneous. Nevertheless, the functional contribution of

each individual node to the various abstract cognitive processes main-

tained by the overall network remains inconclusive (cf. Andrews-

Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Bado et al., 2014;

Braga & Buckner, 2017). Indeed, there is recent empirical evidence that

the individual nodes of the DMN segregate into distinct subnodes

(Schurz, Radua, Aichhorn, Richlan, & Perner, 2014). There is now accu-

mulating support that neurobiologically meaningful subdivisions within

each node of the DMN exist and could be profitably studied in the con-

text of both healthy and abnormal human brain physiology.

Indeed, in a series of recent data-driven studies, the individual

nodes of the DMN have been segregated into distinct subnodes

based on local differences in functional interaction patterns with the

rest of the brain, an established analysis technique called

connectivity-based parcellation (Behrens et al., 2003; Eickhoff, Thi-

rion, Varoquaux, & Bzdok, 2015). This technique assumes that a ROI

may be divided into distinct subregions based on its whole-brain

connectivity profiles. For each considered DMN node, connectivity-

based parcellation has previously demonstrated a subdivision of the

ROI into cluster with topographical boundary definitions, which can

be reused in other studies.

Based on coherent whole-brain coupling profiles, the DMPFC was

decomposed into two caudal and two rostral subnodes (Eickhoff et al.,

2016). The PMC was partitioned into a ventral and dorsal subnode in

the posterior cingulate cortex, one in the retrosplenial cortex (RSC) and

one in the precuneus (Bzdok et al., 2015). Finally, the left and right

TPJs of the DMN were decomposed into an anterior and a posterior

subnode (Bzdok et al., 2013, 2016a). Adopting such a fine-grained per-

spective on DMN organization may provide new insights into the

pathophysiology of schizophrenia. These node and subnode definitions

of the DMN were used as three different ROI sets (cf. Supporting

Information Table S3):

� First, we used the DMN atlas with the DMPFC, PMC, and both TPJs

as composite nodes (4 ROIs), each collapsing its constituent subno-

des (Figure 1a). The covariation analyses based on this ROI set

examined the DMN at the conventional level of granularity: that is

of network nodes. This served as a point of comparison for how this

major brain network has most frequently been studied in previous

brain-imaging research.

� Second, we used the full DMN atlas (12 ROIs) where the DMPFC,

PMC, and the TPJs are represented as more fine-grained subnodes

(Figure 1b). The DMPFC was segregated into a left and right caudal

subnode and a rostro-ventral and rostro-dorsal part (left and right

cDMPFC, rvDMPFC, and rdDMPFC). Note that among the midline

structures of the DMN, only the DMPFC yielded a division along the

right versus left hemisphere in our DMN subnode atlas. The left and

right TPJs were partitioned into an anterior and posterior subnode

(left and right aTPJ and pTPJ). The PMC was parcellated into four

subnodes, including the precuneus (PREC), the ventral and dorsal

posterior cingulate cortex (vPCC and dPCC), and the RSC. The corre-

sponding covariation analyses tested the hypothesis that the DMN

can be shown to reveal richer structure in brain signals when meas-

ured by conventional MRI scanners at the level of network

subnodes.

� Third, the DMN subnode atlas (12 ROIs) was supplemented by

nodes from two multi-modal networks (Figure 1c): (i) the SN (Bzdok

et al., 2012), including the midcingulate cortex (MCC), the bilateral

anterior insula (AI) and the amygdala (AM), and (ii) the DAN (Rott-

schy et al., 2012), including the dorsolateral prefrontal cortex

(DLPFC) and the intraparietal sulcus (IPS) bilaterally (9 additional

ROIs outside of the DMN). Covariation analyses here examined the

hypothesis that the DMN subnodes also display characteristic inter-

actions with the nodes of other canonical brain networks. Indeed,

the DAN and the SN have been implicated in attentional switching

and reallocation of focus, processes that are markedly disrupted in

schizophrenia (Luck & Gold, 2008; Maruff, Pantelis, Danckert, Smith,

& Currie, 1996; Menon & Uddin, 2010; Potkin et al., 2009; Sato

et al., 2003).

In sum, the covariation analyses of functional coupling (RSFC) and volu-

metric coupling (VBM) performed in this study were based on three dif-

ferent sets of previously established ROI. Collectively, the analyses are

used to probe the DMN at different neuroanatomical resolutions and

to systematically evaluate their relations to other major brain networks.

All of the ROIs used in this study are available online for transparency

and reuse via a NeuroVault permanent link (http://neurovault.org/col-

lections/2216/).

2.5 | Signal extraction

Using the three sets of ROIs described above, quantitative measures of

functional activity and gray-matter volume differences were extracted

within the DMN, DAN, and SN ROIs in every participant. Note that all

analyses were constrained to these ROIs. For extracting relevant signal

from a functional or structural brain scan, the ROIs served as

LEFORT-BESNARD ET AL. | 647

http://neurovault.org/collections/
http://neurovault.org/collections/
http:///


topographic masks used to average the MRI signal across the voxels

belonging to a given ROI. In RSFC, each target region was represented

by the average BOLD signal across all voxels of that ROI. This feature-

engineering strategy yielded as many functional brain variables as tar-

get regions in the ROI set for the participants. In VBM, each target

region in the respective set of ROIs was represented by the average

gray matter volume across all ROI voxels. Analogously, this way of

engineering morphological brain features yielded as many volumetric

brain variables per participant as the total number of ROIs in the cur-

rent set. All ROI-wise functional or structural time series were trans-

formed into z-scores by mean centering and unit-variance scaling. As

part of the confound-removal procedure, variance that could be

explained by the factors “site,” “age,” and “gender” as well as their two-

way interactions was regressed out from the corresponding features.

2.5.1 | Measuring network covariation: Sparse inverse

covariance estimation

Covariance has been argued to be a key notion when estimating the

statistical dependencies characteristic of small-scale neural circuits and

large-scale brain networks (Horwitz, McIntosh, Haxby, & Grady, 1995).

In this study, we have performed formal inference of salient covariance

relations in functional (i.e., RSFC) and volumetric (i.e., VBM) networks

(or graphs, mathematically speaking) using sparse inverse covariance

estimation. The automatic identification of networked organization in

graphical models is an important step supporting the transition from

descriptive statistics such as Pearson’s correlation coefficient to gener-

ative models that capture higher-order interactions. Here, the

employed statistical estimator represents an adaptation of Lasso-like

regression models (Tibshirani, 1996) to Gaussian graphical models

FIGURE 1 Target network definitions. The ROIs are rendered on the MNI standard brain with frontal, diagonal, and top views. (a) The
DMN is represented by 4 ROIs, according to how the main network nodes are frequently studied in neuroimaging research. These comprise
the DMPFC, PMC, and right/left TPJ. (b) The DMN nodes are subdivided into 12 ROIs accounting for the distinct subnodes in the DMN
that were recently established (Bzdok et al., 2013, 2015, 2016a; Eickhoff et al., 2016). According to this prior work, the organizational core
of the DMN (“DMN proper”) likely corresponds especially to its blue and red subnodes (the ventral and the dorsal PCCs, the left and right
posterior TPJs, and the rostroventral and rostrodorsal DMPFC). (c) The DMN subnodes are supplemented by 9 ROIs for the DAN (light
green) and SN (purple), drawn from published quantitative meta-analyses (Bzdok et al., 2012; Rottschy et al., 2012). The DAN was com-
posed of the DLPFC and IPS bilaterally. The SN included the MCC and the bilateral AI as well as AM. NeuroVault permanent link to all
ROIs (21 in total) used in this study: http://neurovault.org/collections/2216/
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(Friedman et al., 2008), an approach that has recently been adapted for

application to neuroimaging data (Varoquaux et al., 2010). The validity

of the derived probabilistic descriptions of the coupling properties in

DMN function and volume was ascertained by cross-validation (three

folds). These schemes ensured pattern generalization by measuring the

goodness of fit in unseen data as a proxy for extrapolation to the gen-

eral population (Shalev-Shwartz & Ben-David, 2014). This approach

facilitated model selection for hyperparameter choice with an itera-

tively refined grid based on the log-likelihood score on left-out brain

data (default parameters were chosen according to Varoquaux et al.,

2010).

In a first step, we have computed the empirical covariance matrix

(Figure 2a). This simple second-order statistic reflects how strongly the

times series of ROI pairs covary (in terms of functional coupling in the

RSFC analysis or volumetric coupling in the VBM analysis). The empiri-

cal covariance matrix is given by

X̂
sample

5
1
n

vTv;

where v 2 Rn x p denotes the input dataset with p variables (i.e., func-

tional brain signals averaged per ROI for the RSFC analysis and struc-

tural brain signals averaged per ROI for the VBM analysis) and n

samples (i.e., brain scans). vTv denotes the inner product, the multipli-

cation of the matrix v with its transpose vT: The signed values in the

covariance matrix indicate the direction of the linear relationship

between two variables. This way of capturing the covariation in signal

amplitude between any two ROIs was computed without statistically

acknowledging the possible influence from the other ROIs. Every indi-

vidual value in the covariance matrix can be viewed as a Pearson’s lin-

ear correlation between each pair of ROIs, provided that the time

series X were mean-centered and unit-variance scaled. Although the

strengths of correlation between time series of ROI pairs were consid-

ered in isolation, these covariation strength estimates were likely to be

confounded with each other. For instance, a strong influence of ROI 1

on both ROI 2 and ROI 3 would entail high estimates of covariation

between ROI 2 and ROI 3. This confound in the correlation structure

between any two given target regions may therefore not accurately

recover the underlying population-level coupling strength.

In a second step addressing this confound and enhancing neuro-

biological interpretability, we computed the partial correlations via the

mathematical inverse of the covariance matrix, the so-called precision

matrix (Figure 2b). The optimization objective is expressed by

K̂ ‘1 5 argminK�0 tr K
X̂

sample

� �
2 log det K1k||K||1;

where
P̂

sample is the empirical covariance matrix, || � ||1 denotes the

regularization constraint of putting an ‘1 norm on the matrix elements

lying off the diagonal of the precision matrix K, and k controls the

amount of this sparsity constraint. In contrast to ordinary linear

correlation or to the empirical covariance matrix described above, this

matrix estimates the covariation between every two ROIs while condi-

tioning on the potential influence of the remaining regions. In other

words, the precision matrix obtains the direct covariation between two

nodes within and between the DMN, SN, and DAN by accounting for

partial correlations (Marrelec et al., 2006); unlike common linear corre-

lation approaches, it does not privilege polysynaptic coupling patterns.

Coming back to our toy example, we would thus obtain the condition-

ally independent proportion of covariation strength between ROI 2 and

ROI 3 that is not explained by the conjoint influence from ROI 1.

Despite its utility, this statistical approach is often challenging to apply

in small samples (which is particularly the case of the VBM data in this

study). In any dataset v 2 Rn x p, considerable estimation errors can

FIGURE 2 Network analysis workflow. Exemplary results illustrate the rationale of the statistical modeling framework. (a) The covariance
matrix was computed with brain signals extracted from the DMN atlas. Each entry in this matrix indicates the linear relationship of each
specific pair of target DMN nodes. (b) The precision matrix was computed by inverse covariance estimation (in this case without sparsity
constraint). In contrast to the covariance matrix, the precision matrix captures the multiple relations between each of the pairs of target
nodes while conditioning on the potential influence from the respective other nodes. (c) The parsimonious variant of the precision matrix
was computed by sparse inverse covariance estimation with sparsity constraint. The additional modeling constraint improves interpretability
by automatically reducing the network graph to the important network edges (non-zero strength, red or blue) and ignoring the irrelevant
ones (zero strength, white). (d) The sparse precision matrices were computed separately in healthy controls and schizophrenic patients.
Statistically significant group differences in coupling strengths (brown squares) were determined by nonparametric hypothesis testing. A
significance test assessed group differences between all network relations at once. The entire analysis process was repeated for different

network graph definitions (4 vs. 12 vs. 21 target nodes) and different imaging modalities (resting-state connectivity versus structural
morphology)

LEFORT-BESNARD ET AL. | 649



arise when the number of unknown model parameters exceeds the

number of samples by n < 1
2 p p11ð ).

To overcome erroneous eigenstructure, statistical conditioning was

improved by imposing sparsity assumptions by means of ‘1 penaliza-

tion (Figure 2c) of the inverse covariance estimation (Friedman et al.,

2008; Hastie, Tibshirani, & Wainwright, 2015). In the case of multivari-

ate Gaussian models, conditional independence between ROIs is given

by the zero entries in the precision (i.e., inverse covariance) matrix.

Incorporating this frequentist prior automatically reduces the model

complexity by identifying the most important pairs of network nodes

and ignoring the remainder. In the case of graphs, selecting those

covariance parameters in the space of possible covariance models with

sparse support (i.e., several zero-valued parameters in the graph) equa-

tes to limiting the number of graph edges. This sparse model estimation

automatically balances the compromise between biasing towards

model simplicity (hence, neurobiological interpretability) and obtaining

optimal model fits to brain data. The degree of ‘1 penalization, con-

trolled by the coefficient k, was evaluated and selected in the cross-

validation procedure. One important consequence of ‘1 penalization is

that searching the covariance structure reduces to a convex problem

with a unique solution. Hence, rerunning the sparse inverse covariance

estimation with different random initializations of the model parame-

ters will yield an identical solution each time.

In sum, detailed probabilistic models of network coupling were

automatically derived from multisite brain data by using sparse inverse

covariance estimation in both groups (i.e., healthy subjects and patients

with schizophrenia). Models derived from RSFC data could be inter-

preted as summarizing the most important functional connections,

while models derived from VBM data could be interpreted as summa-

rizing the most important volumetric co-occurrences.

2.6 | Testing for significant disturbance in DMN

covariation

Sparse inverse covariance estimation based on RSFC and separately on

VBM was to be conducted separately in the healthy group and the

group of patients with schizophrenia. Separate precision matrices were

thus obtained in normal controls and people with schizophrenia. Statis-

tical significance for group differences (Figure 2d) was assessed based

on (family wise error, multiple-comparison corrected) p-values for the

multivariate DMN covariation based on bootstrapping for nonparamet-

ric hypothesis testing (Miller et al., 2016; Smith et al., 2015). A series of

bootstrap samples (n51,000) were drawn with replacement from the

healthy brain data (i.e., RSFC data for functional connectivity and VBM

data for the volumetric co-occurrence). For each of the thus generated

1,000 alternative dataset realizations, we performed all above steps of

the sparse inverse covariance estimation (Efron & Tibshirani, 1994).

This computation generated a null distribution of possible covariation

estimates for every ROI-ROI relation in healthy individuals. Bootstrap-

ping thus provided interval estimates that indicated how each coupling

strength of the DMN was expected to vary in the general population

(Hastie, Tibshirani, & Friedman, 2001).

Statistically significant differences between the healthy group and

the group of patients with schizophrenia were then tested at the

threshold corresponding to p<0.001 by assessing whether the true

coupling strength in individuals with schizophrenia was higher or lower

than 99.9% of the coupling strengths in the healthy population. Note

that, in VBM data, we have applied a more lenient threshold corre-

sponding to p<0.05, which led to statistical significance when struc-

tural covariation in schizophrenia exceeded the healthy distribution in

95% of the bootstrap samples. This is because the VBM analyses were

performed in a small-sample scenario (i.e., as many brain images as par-

ticipants), whereas the RSFC analyses were performed in a large-

sample scenario (i.e., tens of thousands of brain images). In so doing sig-

nificance testing for group differences, first in the functional covaria-

tion and then in the structural covariation, has been explicitly corrected

for multiple testing, searching across all ROI pairs estimated (Miller

et al., 2016; Smith et al., 2015).

3 | RESULTS

3.1 | Impact of studying nodes versus subnodes

in the DMN

Based on brain measurements of functional connectivity (i.e., RSFC) in

one set of analyses and structural co-occurrence (i.e., VBM) in another

set of analyses, we initially examined whether subdividing traditionally

studied DMN nodes into subnodes would provide richer information in

brain signals. Based on 4 DMN nodes (Figure 1a) versus 12 DMN subn-

odes (Figure 1b), we therefore computed sparse inverse covariance

estimates (i.e., precision matrices) and their statistically significant

group differences (Figure 2).

In brain function as measured by RSFC, only the functional cova-

riation between the right and the left TPJ of the DMN was determined

to be significantly different between the healthy control and people

with schizophrenia (Figure 3a). We then enhanced topographical granu-

larity. Dividing the main nodes of the DMN into their constituent subn-

odes confirmed the observed effect (Figure 3b). We further observed

that significant aberration did not involve the functional connectivity

between the left anterior TPJ (aTPJ) and right posterior TPJ (pTPJ)

subnodes. Importantly, a number of additional significant effects were

not captured by the subnode-naive connectivity analyses of the DMN.

In brain structure as measured by VBM, only the structural covaria-

tion between the PMC and the left TPJ node was significantly different

between the control and disease groups (Figure 3c). Segmenting the

composite DMN nodes into their distinct subnodes revealed that the

observed effect could be more specifically credited to the morphologi-

cal coupling between the left aTPJ and the precuneus (PREC) subnodes

(Figure 3d). Once more, a number of additional differences in structural

covariation were observed.

These preparatory analyses converged to the conclusion that neu-

robiologically meaningful information contained in fMRI and MRI sig-

nals is likely to remain hidden when using a general-purpose atlas to

define the human DMN. Adopting a more fine-grained subnode atlas

allowed detailing previously shown and discovered new covariation
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effects in the DMN. This observation held true for both assessing func-

tional coupling patterns (i.e., RSFC) and structural coupling patterns

(i.e., VBM) in the DMN. Consequently, the remainder of the results sec-

tion will focus on statistical analyses based on DMN subnodes.

The subsequent functional and structural covariation analyses

were performed in two complementary flavors. Intra-network analyses

performed sparse inverse covariance estimation based on the 12 subn-

odes from the DMN atlas (Figure 1b). Across-network analyses per-

formed the same multivariate modeling of network coupling but

extended the 12 DMN subnodes with nine nodes from the DAN and

the SN, which are two multimodal networks known to closely interact

with the DMN (Figure 1c). Hence, intra-network analyses exposed the

coupling differences in the DMN between healthy controls and people

with schizophrenia at the subnode level. This work was extended in

across-network analyses to characterize the interplay between the

DMN and two other multimodal large-scale networks.

3.2 | Intranetwork covariation in brain function

We systematically detailed the neural coupling fluctuations within the

DMN in people with schizophrenia and healthy controls during the

resting-state (i.e., RSFC). The functional intra-network analyses (Figure

5 and Supporting Information Fig. S1 upper row) revealed the right

aTPJ as the subnode with the highest number of significantly disrupted

FIGURE 3 Studying nodes versus subnodes in the DMN. Significant differences in functional connectivity (left column, RSFC) and
structural co-occurrence (right column, VBM). Schizophrenic patients and healthy controls were compared based on the usual DMN nodes
(upper row) and the topographically more fine-grained DMN subnode atlas (lower row). Richer brain signals have been captured by the
recent parcellation of the DMN nodes, resulting in a higher number of statistically significant group effects. Analysis approaches based on
collapsed DMN nodes may therefore obfuscate disease-specific patterns in fMRI signals as indexed by resting-state connectivity and in MRI
signals as indexed by VBM. The glass brains were created using the nilearn Python package (Abraham et al., 2014)
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functional connections in the DMN. Eight out of 11 connectivity tar-

gets of the right aTPJ were disturbed, including connections to three

subnodes in the DMPFC, the right pTPJ, both subnodes in the left TPJ,

as well as the PREC and the RSC. The subnode with the second highest

number of functional disturbances was the rostro-dorsal DMPFC

(rdDMPFC) subnode. Seven out of 11 of its connection targets were sig-

nificantly affected in people with schizophrenia including the right and

left caudal DMPFC (cDMPFC), the rostro-ventral DMPFC (rvDMPFC),

the RSC subnode as well as both subnodes in the left TPJ and the right

aTPJ. Further, the right cDMPFC and the left pTPJ subnodes in the

DMN exhibited 6 out of 11 affected connections. Both shared common

aberrations to the RSC, to the rdDMPFC, and to the two right TPJs as

connectivity targets. Conversely, the ventral and dorsal posterior cingu-

late cortex (vPCC and dPCC) in the DMN showed only 2 out of 11 sig-

nificantly altered functional connections to other DMN subnodes. Both

were restricted to connectivity targets in the PMC.

Regarding the direction of aberrant functional coupling, the right

aTPJ was hyperconnected with the left TPJs and the rvDMPFC, while

it was hypoconnected toward the RSC, PREC, rdDMPFC, and left

pTPJ. DMPFC subnodes were hypoconnected with each other in

patients compared to the healthy group. A set of further hypoconnec-

tions were observed involving significant aberrations of the right pTPJ

and the PREC with other subnodes.

In sum, multivariate connectivity analyses based on functional

resting-state fluctuations illustrated statistically significant disturbances

in 27 out of 60 connections between subnodes of the DMN in patients

with schizophrenia. Among these, the right aTPJ exhibited the highest

and the vPCC and dPCC the lowest number of affected coupling

strengths with other parts of the DMN.

3.3 | Across-network covariation in brain function

We then tested for group differences in the functional coupling

between the DMN and the multimodal networks DAN and SN

(Figures 4a and 5 and Supporting Information Fig. S1, second row).

Importantly, after adding the nodes from the other two macroscopic

brain networks for computing precision matrices, the overall pattern of

covariation remained similar. In the intranetwork versus across-

network analyses, the differences in functional covariation between

DMN subnodes were not statistically significant at p<0.05 (dependent

t-test). These observations support the notion that the functional con-

nectivity patterns delineated by sparse inverse covariance estimation

on RSFC data are relatively robust to changes in the size and definition

of the network graph (i.e., which nodes are included).

Regarding the DAN, the left IPS displayed the highest number of

edges that were significantly disturbed in patients. Nine out of 20 con-

nectivity targets were affected. These included six subnodes in the

DMN (rdDMPFC, dPCC, both left TPJs, right aTPJ, and PREC) and

nodes in the other two networks including the mid-cingulate cortex

(MCC), the right AM and the right IPS. The left DLPFC in the DAN also

showed disrupted connectivity with 8 out of 20 targets. These included

six DMN subnodes (right cDMPFC, rvDMPFC, rdDMPFC, RSC, and

both left TPJs) as well as nodes of the SN including the left AI and

MCC. The right IPS, in turn, showed seven affected connections,

including DMN subnodes (rdDMPFC, left aTPJ, both right TPJs, PREC)

and DAN nodes (left IPS and right DLPFC), but no part of the SN. Simi-

lar to its left-hemisphere counterpart, the right DLPFC showed six

affected connections, including nodes of the SN (MCC, right AI), only

one node of the DAN (right IPS), as well as several DMN subnodes

(rdDMPFC, both left TPJs).

Regarding the SN, the MCC displayed 6 out of 20 functional con-

nections disturbed in schizophrenia patients, including several DMN

subnodes (left and right cDMPFC, and RSC) and nearly the entire DAN

(left and right DLPFC, left IPS), but no other part of the SN. The left AI

was the second most affected node with four aberrant connections,

including only one DMN subnode (left cDMPFC), one DAN node (left

DLPFC), and two SN nodes (right AI, left AM). The right AM in turn

showed only three affected connections with the DMN (right

cDMPFC, RSC) and DAN (left IPS). The right AI showed three affected

connections with the DMN (dPCC), the DAN (right DLPFC), and the

SN (left AI). Finally, the left AM had only two affected connections

with the DMN (rvDMPFC) and the SN (left AI). As a general observa-

tion, the highest number of functional disruptions therefore appeared

between the DMN and the DAN.

Regarding the directionality of functional coupling aberration, the

right DLPFC of the DAN was hypoconnected with the DMN, whereas

the left DLPFC and the default network were hyperconnected except

with the rdDMPFC. As a similar pattern, the right IPS of the DAN was

mostly hypoconnected with the DMN, except with the left aTPJ, while

the left IPS was mostly hyperconnected except with the left pTPJ and

the PREC. As to the SN, only the MCC and the right AM exhibited

hypoconnectivities with the DMN, with the right cDMPFC and the

RSC, respectively.

Summing up the present findings in functional connectivity data

within and from the DMN, we made several observations. First, the right

aTPJ emerged as a potential driver of perturbations to network coupling

observed in schizophrenia, especially when focusing on functional cova-

riation within the DMN (i.e., intranetwork analysis). Importantly, this sub-

node of the DMN has been repeatedly reported not to be part of the

functional core of this canonical network (Bzdok et al., 2013; Mars et al.,

2012). Second, many of the subnodes, here identified to drive dysfunc-

tion in schizophrenia, are not part of what is emerging to be a default-

mode network proper. According to previous studies, such a stricter

topographical definition of the DMN core does most likely not include

the left and right anterior TPJs, the PREC (Bzdok et al., 2015; Margulies

et al., 2009), the left and right cDMPFC (Eickhoff et al., 2016), or the RSC

(Bzdok et al., 2015). Indeed, parts of the DMN core, the vPCC and dPCC,

were among the least dysfunctional target regions in both intra- and

across-network analyses. Third, the functional abnormalities in schizo-

phrenia frequently manifested between commonly observed macro-

scopic networks, especially between the DMN and the DAN.

3.4 | Intranetwork covariation in brain structure

We conducted an analysis in the domain of brain structure using the

VBM data that was analogous to the assessments of brain function.

652 | LEFORT-BESNARD ET AL.



FIGURE 4 Dysfunctional connectivity and aberrant structural covariation across networks. Depicts the significant increase (red lines) or
decrease (blue lines) in functional connectivity (a) or in structural co-occurrence (b) comparing schizophrenic to healthy subjects in the
across-network RSFC analyses (cf. Supporting Information Fig. S1). Circles represent regions of interest in the DMN (orange), the “DMN
proper” (yellow), the SN (purple), and the DAN (light green). The left column shows the differences within each network, while the right col-
umn displays differences between two networks. The connectivity findings show that the dysfunctional connectivities within the DMN
include several subnodes that are not part of the “DMN proper.” While the functional coupling between the DMN and the SN is partly dis-
rupted, the functional connectivity between the DMN and the DAN is particularly disturbed. Furthermore, the connectivities within and
between the SN and the DAN remain largely intact. The covariance findings show that the deviant structural covariations within the DMN
involve several subnodes not part of the “DMN proper.” The volumetric relationships between the DMN and the SN are also more dis-
rupted than between any other network pair. Collectively, the findings emphasize internetwork dysregulation rather than exclusive disturb-
ance of the DMN core parts. Flat brains were generated using PyCortex (Gao, Huth, Lescroart, & Gallant, 2015)
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We thus investigated the inter-individual morphological variability

within the DMN in healthy subjects and patient with schizophrenia. The

structural co-occurrence results from covariation analyses on VBM data

were then also evaluated for statistically significant group differences.

The structural intra-network analyses (Figure 5 and Supporting

Information Fig. S1, third row) revealed DMN subnodes in the PREC

and the rdDMPFC as the target regions with highest structural

disturbances in people with schizophrenia. For the PREC, 4 out of 11

volumetric co-occurrence relations were affected, including the medial

frontal pole (rvDMPFC and rdDMPFC), dPCC, and left aTPJ. The

rdDMPFC in turn showed four affected volumetric relations, including

the right cDMPFC, both left TPJ subnodes, and the PREC. Conversely,

only a single disturbed structural relation with other parts of the DMN

was found for the right aTPJ, left cDMPFC, vPCC, and RSC.

FIGURE 5 DMN aberrations in schizophrenia are specific to subnodes. Functional connectivity (RSFC) and structural co-occurrence (VBM)
measurements were used to compute sparse inverse covariance estimation separately in healthy and schizophrenic individuals (left column).
We conducted intra-network analyses (i.e., DMN subnode atlas) and across-network analyses (i.e., DMN subnode atlas augmented by nodes
of the DAN and SN). Statistically significant group differences (brown squares in middle column) between the normal and diagnosed individ-
uals are shown as derived from sparse inverse covariance estimation. The number of subnode-specific dysregulations (right column) is

shown as counts when viewed from the DMN proper (yellow), other DMN parts (orange), DAN (light green), and SN (purple). The findings
make apparent that schizophrenia pathophysiology may be relatively more driven by across-network effects and effects outside of the
DMN proper. The glass brains were created using the nilearn Python package (Abraham et al., 2014)
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The large majority of structural coupling aberrations were hyperco-

variations between DMN subnodes. Specifically, all PMC subnodes,

including the PREC, both pTPJs, the right aTPJ and cDMPFC exhibited

only hypercovariations. Further, the left aTPJ was hypoconnected with

the rdDMPFC and the right cDMPFC was hypoconnected with the

rvDMPFC.

In sum, the intranetwork analyses of structural co-occurrence illus-

trated that the DMN subnode atlas was instrumental in identifying

fine-grained differences in morphological deviations in a large group of

people diagnosed as schizophrenic. Healthy and diagnosed subjects

showed statistically significant differences in a fifth of the volumetric

coupling relations within the DMN (12 out of 60). This result stands in

contrast to the higher number of functional aberrations found in the

corresponding analyses in the functional imaging arm of the study

(RSFC).

3.5 | Across-network covariation in brain structure

We finally tested for group differences in structural covariation

between the DMN and the DAN and SN (Figures 4b and 5 and Sup-

porting Information Fig. S1, lowest row). Concurrent with the func-

tional covariation analyses, the overall pattern of structural coupling

was similar when computing the precision matrices after taking into

account the nodes of the DAN and SN. In the intranetwork versus

across-network analyses, the differences in structural covariation

between DMN subnodes were not statistically significant at p<0.05

(dependent t-test). As another global observation, none of the struc-

tural analyses showed any negative covariation in the healthy or dis-

ease group, in contrast to the various positive and negative coupling

results observed in the functional covariation analyses. Moreover, we

again showed a lower overall number of statistically significant volume

differences in people with schizophrenia (31 significant abnormalities)

compared with the corresponding group differences in brain function

(61 significant abnormalities).

Regarding the DAN, we identified the left DLPFC as exhibiting

statistically significant differences between healthy controls and people

with schizophrenia in 3 out of 20 volumetric relations. These included

the right aTPJ, MCC, and right AI. Congruently, the DLPFC in the right

hemisphere also exhibited affected volumetric relations with the right

aTPJ and the right AI. Further, the right and left IPS both showed

impaired volumetric coupling with the AM of the same hemisphere.

While the right IPS was also disrupted in its volumetric relation with

the MCC, the left IPS displayed another impaired relation with the left

cDMPFC.

Regarding the SN, the MCC as well as left and right AI of this

same commonly observed multimodal network showed the highest

number of impaired volumetric couplings (besides rvDMPFC). All three

SN nodes showed disturbed relations with subnodes in the DMPFC.

More specifically, left AI exhibited four affected relations, including the

right cDMPFC, the rvDMPFC, the vPCC, the left pTPJ, and the right AI.

The AI in the right hemisphere instead showed affected relations with

rvDMPFC, left AI, left AM, as well as the right and left DLPFC. The

MCC had five affected volumetric relations including the rdDMPFC,

the PREC, the left DLPFC, as well as the IPS and pTPJ in the right

hemisphere. Finally, both AM showed dysfunctional structural coupling

among each other as well as to the IPS in the same hemisphere, while

the left AM showed additional abnormalities with the right AI and the

left pTPJ. As a general observation, the highest number of structural

disruptions emerged between the DMN and the SN.

Consistent with the intranetwork analysis in brain structure,

patients mostly exhibited significant hypercovariations between the

DMN and the other canonical networks. Specifically, both the MCC

and the right AI, the most disrupted SN nodes towards the DMN,

exhibited only hypercovariations while the SN exhibited hypocovaria-

tions with the DMN only from the left AM and the right AI.

In sum, major brain networks, such as the DAN and SN, demon-

strated specific volumetric coupling relations with distinct subnodes of

the DMN that were shown to be impaired in schizophrenia. Impor-

tantly, only a few subnodes of the DMN proper showed statistically

significant group differences. Similar to the present finding in brain

function, the morphological properties of the DMN proper were found

to be more intact than many other parts of the graph. Moreover, nodes

of the SN were most impaired among all three networks and featured

most aberrations with coupling partners of the DMN proper.

4 | DISCUSSION

Our study suggests that dysconnectivity and dysregulation anchored in

the DMN is a neurobiological hallmark of schizophrenia spectrum dis-

orders. Adopting a systems neuroscience approach, we aimed at recon-

ciling coupling within the highly associative DMN and its coupling with

the multimodal saliency and dorsal attention networks. We combined

meta-analytically defensible network definitions and recently devel-

oped machine learning methods for multivariate discovery of primary

covariation patterns. Network coupling was investigated in two

domains, first, based on brain measurements of functional resting-state

fluctuations (i.e., RSFC) and second, based on structural brain morphol-

ogy (i.e., VBM). Applying an identical modeling strategy to observed

functional fluctuations and volumetric differences facilitated conclu-

sions across neurobiological levels, including their third-party coupling

influences. Functional covariation analyses revealed extended distur-

bances related to the right anterior TPJ and the DAN. In contrast,

structural covariation analyses emphasized disturbances related to the

precuneus in the PMC and the SN. These findings emphasize disturbed

coupling between the DMN and other large-scale networks rather than

exclusive dysregulation of core parts within the DMN. Collectively, our

results suggest that some previously inconsistent findings may be rec-

onciled by using a DMN atlas with subnode resolution to recover cur-

rently under-appreciated, physiologically meaningful covariation

patterns in schizophrenia.

4.1 | Covariation patterns mostly altered by cortical

areas that are not part of the “DMN proper”

Covariation analyses applied to resting-state fluctuations within and

from the DMN identified the right anterior TPJ subnode as featuring a
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particularly high number of coupling perturbations in people diagnosed

as schizophrenic, especially in the functional intranetwork analyses.

Recent brain parcellation studies have associated the anterior portions

of the TPJs with externally focused evaluation of visual, auditory, tac-

tile, and other preprocessed sensory input as well as maintenance of

perception-action cycles associated with the SN (Bzdok et al., 2013,

2016a; Glasser et al., 2015; Humphreys & Ralph, 2015; Mars et al.,

2012). Hence, this investigation at subnode granularity points to an

aberration of multimodal integration of perception-action cycles,

more closely linked to DAN and SN function, rather than to

imagination-based thought processes, more closely linked to DMN

function (Hassabis, Kumaran, & Maguire, 2007; Wang et al., 2017).

This quantitative evidence potentially relates to several clinical mani-

festations of schizophrenia, such as false subjective beliefs (delusion),

perceiving unreal stimuli (hallucinations), awkward sensations (pares-

thesia), concentration difficulties, as well as disorganized speech and

motor movement.

Across structural covariation analyses, the PREC emerged as one

of the most impaired DMN nodes. The PREC is anatomically located in

the parietal lobe and is thought to subserve visuomotor processes,

such as those necessary for attentional shifting, reaching movements,

and hand-eye coordination (Margulies et al., 2009; Mesulam, 1981;

Stephan et al., 1995). These cognitive associations ascribed to the

PREC can indeed be related to several schizophrenia symptoms, espe-

cially loss of train of thought, impairments in executive function, work-

ing memory, and memory retrieval, as well as psychogenic motor

abnormalities (catatonia). Both anterior TPJs and the PREC are similarly

believed to govern context-dependent reorganization of large-scale

networks (Bzdok et al., 2013; Cavanna & Trimble, 2006; Downar,

Crawley, Mikulis, & Davis, 2000; Seghier, 2013).

As a general conclusion, functional and structural findings agreed

in emphasizing that (i) the communication within the medial core of the

DMN in prefrontal and cingulate regions was relatively preserved in

the examined patients and (ii) the dysfunction of schizophrenia sub-

stantially involves subnodes that do not belong to what is emerging to

be a default mode network proper. Such a stricter topographical defini-

tion of the DMN excludes the anterior left and right TPJ, the PREC

(Bzdok et al., 2015; Margulies et al., 2009), the RSC closer to the limbic

system (Braga & Buckner, 2017; Bzdok et al., 2015; Vogt & Laureys,

2005), and the caudal DMPFCs closer to the anterior cingulate cortex

(Eickhoff et al., 2016; Vogt & Pandya, 1987). Instead, our definition of

the DMN core includes the ventral and the dorsal PCCs, the left and

right posterior TPJs, and the rostroventral and rostrodorsal DMPFC.

Both the ventral and dorsal PCCs were identified among the least dys-

functional areas across all present analyses.

Collectively, these data suggest that dysfunctions in the DMN that

underpin schizophrenia pathology do not emerge from the core of the

network, but are reflected in the coupling of the subnodes of the larger

network, regions that prior work has implicated as participating in

large-scale networks other than the DMN. In particular, our study high-

lights disturbed internetwork communication, focused on the right

anterior TPJ and PREC, as candidate drivers of the disease process that

underpins schizophrenia.

4.2 | Discrepancies between volumetric and
functional aberration patterns in schizophrenia

In the context of schizophrenia, network analyses have frequently

been performed on either functional brain measurements (Liu et al.,

2008; Lynall et al., 2010; Yu, Sui, Kiehl, Pearlson, & Calhoun, 2013) or

structural brain measurements (Konrad & Winterer, 2008; van den

Heuvel, Mandl, Stam, Kahn, & Pol, 2010). Direct investigations of the

volume-function correspondence in long-distance coupling have been

less frequent (But see: Clos, Rottschy, Laird, Fox, & Eickhoff, 2014;

Honey et al., 2009; Kelly et al., 2012).

This study departs from previous single-modality investigations by

applying identical covariation analyses to RSFC and VBM data to facili-

tate neurobiological conclusions independent of differences in the

employed statistical models. We did not find strong evidence that these

neurobiological domains show analogous patterns when considering the

DMN in isolation or its interplay with the DAN and SN. In the functional

domain, for instance, the right anterior TPJ was the overall most

affected subnode, while the PREC and the right dorsal DMPFC exhib-

ited the strongest disruptions in the structural domain. These findings

suggest that neural disturbances in schizophrenia are a result of hetero-

geneous changes in cortex architecture that do not map in a simple way

to patterns of neural communication. In addition, these regularities

emphasize abnormalities in schizophrenia between networks rather

than within the DMN core.

Given that the DMN is believed to exert control over the subordi-

nate DAN and SN (Carhart-Harris & Friston, 2010; Margulies et al.,

2016), it is exciting that our results revealed a dissociation in their dis-

rupted links in the structural and functional network analyses. DMN

interactions with the SN were more consistently altered in brain mor-

phology (VBM), whereas DMN interactions with the DAN emerged as

more consistently altered in brain function (RSFC) in patients with

schizophrenia. Congruently, previous quantitative meta-analysis on

schizophrenia and other psychiatric populations highlighted aberration

in the SN across volumetric neuroimaging studies (Goodkind et al.,

2015) and dysfunction in the DAN in large amounts of functional neu-

roimaging studies (McTeague et al., 2017). Both inter-individual differ-

ences in local brain volume (e.g., Draganski et al., 2004) and

fluctuations in resting-state patterns (e.g., Rosenberg et al., 2015) have

been shown to offer reliable correlates of success and failure in specific

cognitive performances (Kanai & Rees, 2011). Differences in the execu-

tive control performance between healthy individuals were related to

cortical thickness differences in the SN extending into parts of the

DMN (Westlye, Grydeland, Walhovd, & Fjell, 2011). The present patho-

logical increases in structural DMN-SN coupling may therefore provide

insight into a longer-term compensatory mechanism due to impaired

executive function in patients with schizophrenia. In contrast, the pres-

ent patterns of pathological increases and decreases in functional

DMN-DAN coupling may uncover a multifaceted dysbalance in allocat-

ing attentional resources to internal thought and emotion (cf. Shim

et al., 2010; Whitfield-Gabrieli et al., 2009). Thus, previous isolated

findings are reconciled by our integrative analysis pipeline that situated

detailed disruption patterns in the context of top-level DMN control

on intermediate multimodal networks.
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Although we did not find a close mapping between structure and

function, in both domains we found evidence that corroborates the

dysconnection hypothesis of schizophrenia (Friston et al., 2016; Friston

& Frith, 1995; Stephan et al., 2009; Weinberger et al., 1992) as a cen-

tral pathophysiological component that could underlie schizophrenia

spectrum disorders. Together, our findings support an account of the

pathophysiology of schizophrenia in which abnormal integrity of long-

range connections prevent integration of information from systems

that support the maintenance of cognitive sets, such as mediated by

the SN, or the dynamic allocation of cognitive resources, such as medi-

ated by the DAN (Dosenbach et al., 2006; Seeley et al., 2007).

4.3 | Future directions

More globally, the overwhelming majority of mental disorders are

known to show some disturbance of the DMN (Broyd et al., 2009;

Whitfield-Gabrieli & Ford, 2012). Yet, we deem it unlikely that brain

disorders with diverging clinical phenotypes are caused by identical

neurobiological disease mechanisms. Rather, the numerous brain disor-

ders affecting the DMN are perhaps more realistically framed to under-

lie a stratification of partly overlapping pathophysiologies (cf. Calhoun

et al., 2011; Meda et al., 2012; €Ong€ur et al., 2010). Investigating the

DMN at an increased level of topographic granularity may be a prereq-

uisite for identifying the DMN dysregulation specific to each major

psychiatric disorder. A variety of neurobiologically distinct types of

DMN aberration may expose brain phenotypes that enable effective

stratification of patients with schizophrenia in clinical practice (Bro-

dersen et al., 2011). If successful in schizophrenia, this analysis frame-

work may scale to other major psychiatric disorders.

Moreover, our approach leveraging sparse inverse covariance esti-

mation has several advantages, including enhanced interpretability,

statistically privileging direct network influences, and interoperability

across different brain-imaging modalities. However, the employed sta-

tistical model is inherently blind to interaction partners outside of the

network graph and disregards higher-order interaction between the

nodes in the network graph (Ganmor, Segev, & Schneidman, 2011;

Giusti, Ghrist, & Bassett, 2016; Giusti, Pastalkova, Curto, & Itskov,

2015). That is, our analysis strategy was able to consider all targeted

internodal relations simultaneously but assumed network interaction to

be only composed of a set of dyadic partners. Going beyond pair-wise

covariation in network analysis would be an exciting future extension

of this work (Bassett & Sporns, 2017).

5 | CONCLUSION

Conventional brain-imaging measurements of the highly associative

DMN were shown to carry fine-grained information about its coupling

relation to other macroscopic brain networks. We could thus conclude

that schizophrenia may not be explained by a primary dysfunction in

the backbone of the DMN (“default mode network proper”). Schizo-

phrenia psychopathology may not only be due to deficits within the

DMN but especially also to deficits between the DMN and other multi-

modal networks including the SN and DAN. Further, by leveraging

state-of-the-art machine learning techniques for a direct juxtaposition

of functional and structural covariation patterns, we provide empirical

evidence for complementary disease mechanisms in schizophrenia

patients. These first steps towards a more integrative approach to

study DMN disturbance may be critical to chisel out the “dysconnec-

tion” pathophysiology potentially underlying schizophrenia.
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